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OCO-2 Oxygen Requirement

• OCO-2 requires accurate spectroscopy (0.1%) in 
the O2 A-Band

• Drouin et al. study1 resulted in ~0.5% accuracy

• Line Mixing (LM) and Collision Induced 
Absorption(CIA) have effect ~1% and are leading 
contributors to remaining issues

oco.jpl.nasa.gov/images/ocov2/OCO_column.jpg
1Drouin et al. DOI: 10.1016/j.jqsrt.2016.03.037. 

O2 A-Band

THz



Line Mixing and Collision- Induced Absorption
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When two nearby lines have interacting 
quantum levels, stronger lines will steal 
intensity from weaker lines, and both 
become asymmetric.

Line Mixing (LM) Collision Induced Absorption (CIA)
Weak ‘continuum’ absorption 
underneath the A-band caused by 
collision-allowed transitions.



An Experiment Designed to Measure LM and CIA
Photoacoustic Spectroscopy Advantages

• Zero baseline: Ideal for measuring LM/CIA

• Large dynamic range:

<100 Torr to >4 atm. without saturating

Ultimate Goals:

• High frequency resolution 
measurements over full A-Band

• Atmospherically relevant temperatures

~220 K- 296 K

LM and CIA have >1% effect on 
satellite retrievals and must be 
better characterized using new 
laboratory data.



Photoacoustic Resonator

Cell design: Gillis, Havey, Hodges, Rev. Sci. Instrum. 81, 064902 (2010)

Acousto-optic
Modulator

Microphone to lock-in amplifier, 1.5 kHz

Amplified CW 
759-769 nm

0.6 W

Amplitude
Modulated

absorption →thermal expansion →pressure wave → sound
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Modulation Frequency (kHz)

1.5 kHz

1.5 kHz

Photoacoustic signal depends on:
• response function dependent on microphone properties, 

resonator shape, and gas composition
• absorption quenching efficiency
• modulated laser power



Spectrometer Properties
• Modehop- free scanning across 5+ THz A-Band

• 2 MHz frequency resolution: WLM calibrated with stabilized HeNe

• ~1 day-long scans with evenly spaced points

• Pressure range:  ~100-3000+ Torr

• Temperatures: Stability at 0.6 K over 1 day
• Planned lower temperature measurements  193 – 296 K (microphone limited)







Analysis Overview

• Analysis done with Labfit multispectrum fitting software
• Speed-Dependent Voigt with Line Mixing and CIA

• Will compare to Drouin et al.’s fit:
• Line Mixing: separate matrices for self- and foreign- gasses, P- and R- Branch, 

• Splitting between doublets has been neglected

• Matrices are fixed to theory except for matrix-wide scaling factors

• CIA:
• Determined by empirical fit to TCCON spectra (ground-based FTS measurements of the 

atmosphere)



Comparison to previous dataset
Pure O2 in published A-Band fit

• PAS spectra will be added to existing fit

• PAS will benefit from intensity constraints to FTIR/CRDS data

• FTIR/CRDS will benefit from zero baseline and high pressure of PAS

Pure O2, PAS
Technique Pressure (Torr) Temp (K) Pressure (Torr) Temp (K)

CRDS 1 295 309 297

FTIR 200 297 500 297

FTIR 503 298 901 297

FTIR 415 205 1404 297

FTIR 794 207 2036 297

FTIR 721 189 2894 297

FTIR 1000 189



Spectrum of Pure O2 in Transmission

Measurement

Transformed from PAS signal to % transmission: strongest lines are 98% transmission
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FTIR and PAS Datasets: Fit of PAS Spectra to Drouin 
parameters lead to significant residuals

• FTIR and PAS residuals are weighted by maximum absorption (PAS 2%, FTIR 100%)
• PAS noise levels are much lower but there are systematic residuals at each peak
• Will focus on P17 doublet for a preliminary look at what we can learn

FTIR PAS(very small)

P17

FTIR PAS weighted fit residuals, Drouin fit 
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Largest PAS residuals are frequency-related

• Pressure shift is a major contributor to the PAS residuals, clear pressure trends (band-wide)
• Absolute position is also a factor: 

• Drouin fit has mild disagreement with HITRAN2012 and HITRAN2016 (~5-10 MHz)

300 Torr
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2900 Torr
ALL FTIR

weighted fit residuals, Drouin fit 

PAS transmission (FTIR omitted)
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Adjusting self pressure shift improves PAS fit

300 Torr
900 Torr
1400 Torr
2000 Torr
2900 Torr
ALL FTIR

weighted fit residuals, PAS-driven shift, position

weighted fit residuals, Drouin fit 
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Wavenumber (cm-1)• 2 changes to the Drouin fit :

1.PAS data was fit for self-shift, this shift was applied to the global fit 
2.FTIR calibration was frequency offset to match PAS, FTIR residual structure unchanged

• Line position WAS NOT changed from Drouin fit, and is not a perfect match
• Majority of remaining PAS residual structure is due to intensity effects, LM, and CIA.



Is PAS Sensitive to Line Mixing?

• LM has a large effect on asymmetry in this doublet
• 900 Torr spectrum is acutely sensitive to LM, with greater effects at higher 

pressures

PAS residuals only, shifted Drouin fit, with and without Line Mixing 
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Is PAS Sensitive to Collision-Induced Absorption?

• CIA affects baseline levels consistent with pressure as expected
• Very low impact on pressures overlapping with previous dataset

PAS residuals only, shifted Drouin fit, with and without CIA
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Line Mixing and Collision-Induced Absorption

• FTIR noise is very close to 
the level of the CIA and LM 
effects on the spectra.

• PAS noise is much lower 
and especially the high 
pressure spectra are very 
sensitive to both LM and 
CIA



Frequency Scanning
• Scans have constant step size, currently 400 MHz

• Modehops (cavity mode/grating mismatch) avoided by adjusting laser current

• Scanning software uses current, piezo, and stepper to collect full A-Band

Stepper motor: 5+ THz Range, GHz precision

389.9 390.4 390.9 391.4 391.9 392.4 392.9 393.4 393.9 394.4 394.9

Piezo: 18 GHz Range 
2 MHz precision 

Laser current: ~100 MHz Range 
<50 kHz precision

(current adjustment)

(piezo, stepper adjustment)

www.sacher-laser.com/downloads/

THz



Frequency Stability

-5

0

5

10

0 50 100 150

D
ri

ft
 (

M
H

z)

Time (s)

Unlocked Locked

HighFinesse Wavemeter
• Calibrated with stabilized He-Ne 
• 2 MHz accuracy
• 120 Hz+ scan rate • Laser current is modulated at 120 Hz to lock to 

targeted λ-meter reading
• 0.5 s averaging, <2 MHz standard deviation



Temperature control plans

Temperature control housing
Targeted range: 220 K-296 K
Targeted stability: >1 K
(Still in development, 0.6 K 
achieved over 5 hrs at 282 K)

Vacuum chamber
Room T, no stabilization: 
0.6 K in 24 hrs drift
(currently achievable)

Resonator



Fitting Photoacoustic Spectra

Labfit used to ultimately include this data in the larger A-band multispectrum fit

100 ∗ 𝑒−𝑀𝑖𝑐. 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ∗𝑆.𝐹. = 𝑇 𝜔 = 𝐵 ∗ 𝑒−𝑆 𝑇 𝑁 𝐿 Γ(𝜔)

Labfit Input Fit ParametersMeasurement

• S.F. Scale Factor depends on cell constant and quencher efficiencies
• For current measurements empirically determined for ~99% transmission

• L Pathlength: correction factor to match predetermined S(T) in our fit 
• B Baseline: fixed to 100% transmission based on low- pressure scans
• Γ 𝜔 Line shape model: Labfit’s Speed-Dependent Voigt


